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Abstract

Numerous problems arising in engineering applications can have
several objectives to be satisfied. An important class of problems of this
kind is lexicographic multi-objective problems where the first objective
is incomparably more important than the second one which, in its turn,
is incomparably more important than the third one, etc. In this paper,
Lexicographic Multi-Objective Linear Programming (LMOLP) prob-
lems are considered. To tackle them, traditional approaches either
require solution of a series of linear programming problems or apply
a scalarization of weighted multiple objectives into a single-objective
function. The latter approach requires finding a set of weights that
guarantees the equivalence of the original problem and the single-
objective one and the search of correct weights can be very time con-
suming. In this work a new approach for solving LMOLP problems
using a recently introduced computational methodology allowing one
to work numerically with infinities and infinitesimals is proposed. It
is shown that a smart application of infinitesimal weights allows one
to construct a single-objective problem avoiding the necessity to de-
termine finite weights. The equivalence between the original multi-
objective problem and the new single-objective one is proved. A simplex-
based algorithm working with finite and infinitesimal numbers is pro-
posed, implemented, and discussed. Results of some numerical exper-
iments are provided.
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1 Introduction

Engineering applications often lead to optimization problems where several
objectives should be satisfied. An important class of problems of this kind
is lexicographic multi-objective problems where the first objective is incom-
parably more important than the second one which, in its turn, is incompa-
rably more important than the third one, etc. In case each of the objectives
is represented by a linear function under linear constraints, Lexicographic
Multi-Objective Linear Programming (LMOLP) problems are considered.
Traditionally LMOLP problems are solved in two different ways (see, e.g.,
[7, 14, 36, 37]). The first one called preemptive approach consists of solving a
sequence of single-objective linear programming (LP) problems, where new
constraints are added to the subsequent LP problem once an optimal solu-
tion to the previous problem has been found. Clearly, this approach is time
consuming. The second approach known as nonpreemptive one (see [36])
transforms LMOLP into a single-objective LP problem by using a weighted
sum of the objectives. This approach has the difficulty to find the weights
which guarantee, a-priori, the equivalence of the resulting single-objective
problem with the original multi-objective one. In practice, determining such
weights is a tricky task and it can be even more time consuming then the
preemptive approach.

In the present paper it is proposed to analyze LMOLP problems us-
ing a recently introduced computational methodology allowing one to work
numerically with infinities and infinitesimals in a handy way (see for a de-
tailed introduction surveys [19, 23, 28, 30, 32] and the book [17] written in
a popular way). This computational methodology has already been success-
fully applied in optimization and numerical differentiation (see [3, 6, 24, 40])
and in a number of other theoretical and computational research areas such
as cellular automata (see [4, 5]), Euclidean and hyperbolic geometry (see
[11, 12]), percolation (see [8, 9, 38]), fractals (see [18, 20, 26, 31, 38]), infi-
nite series and the Riemann zeta function (see [21, 25, 39]), the first Hilbert
problem, Turing machines, and supertasks (see [15, 22, 33, 34]), numerical
solution of ordinary differential equations (see [1, 13, 27, 35]), etc.

This methodology uses a numeral system working with an infinite num-
ber called grossone, expressed by the numeral ¬, and introduced as the
number of elements of the set of natural numbers (the non-contradictory of
the methodology has been studied in [10]). This numeral system allows one
to express a variety of numbers involving different infinite and infinitesimal
parts and to execute operations with all of them in a unique framework. No-
tice that this numerical approach is not related to the famous non-standard
analysis (see [16]) that has a symbolic character and, therefore, allows sym-
bolic computations only, whereas the present text is dedicated to numerical
optimization methods.

Following the guidelines traced in [2, 29] for working with problems
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involving lexicographic ordering, it is proposed hereinafter to transform
LMOLP into a single-objective LP problem by multiplying the most im-
portant objective by 1, the second by ¬−1, the third by ¬−2 etc., where
¬−i, 1 < i ≤ r, are infinitesimals and r is a finite number of objectives. It
is shown then that, after this transformation, the resulting single-objective
LP problem formulated with the help of grossone-based numbers can be
solved only once by using a simplex-like method working with grossone-
based numbers that can include infinitesimal parts. The overall advantage
of this approach consists of the possibility to solve only one LP problem,
without the need to look for correct finite weights that should be provided
to an algorithm if the traditional nonpreemptive scheme is applied.

The remaining text is structured as follows. In Section 2, the lexico-
graphic multi-objective linear programming problem is stated and the pre-
emptive and nonpreemptive schemes are described. The grossone method-
ology is briefly presented in Section 3 whereas Section 4 introduces the
nonpreemptive grossone-based scheme. In Section 5, a theoretical analysis
of the introduced approach is performed and the equivalence between the
original multi-objective problem and the new single-objective one is proved.
Section 6 provides the gross-simplex algorithm able to solve the resulting
problem. Finally, Section 7 presents some promising experimental results.

2 Lexicographic multi-objective linear program-
ming

Given the LMOLP problem:

LexMax c1 · x, c2 · x, ..., cr · x
s.t. {x∈Rn : Ax = b, x > 0}

(P1)

where ci, i = 1, ..., r, are row vectors ∈ Rn, x is a column vector ∈ Rn,
A is a full-rank matrix ∈ Rm×n, b is a column vector ∈ Rm, and · is the
standard scalar product between two real vectors. LexMax in (P1) denotes
Lexicographic Maximum and means that the first objective is much more
important than the second, which is, on its turn, much more important
than the third one, and so on. Sometimes in literature this is denoted as
c1 · x� c2 · x� ...� cr · x. As in any LP problem, the domain of (P1) is
a polytope:

S ≡ {x∈Rn : Ax = b, x > 0} . (1)

Notice that the formulation of (P1) makes no use of gross-numbers or gross-
arrays involving ¬, namely, it involves finite numbers only. Hereinafter
we assume that S is bounded and non-empty. In the literature (see, e.g.,
[7, 14, 36, 37]), there exists two approaches for solving the problem (P1):
the preemptive scheme and the nonpreemptive scheme. They are described
in the following two subsections.
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2.1 The preemptive scheme

The preemptive scheme introduced in [36] is an iterative method that at-
tacks (P1) by solving a series of single-objective LP problems. It starts by
considering the first objective function alone, i.e., by solving the following
problem:

Max c1 · x
s.t. {x∈Rn : Ax = b, x > 0}

(P2.1)

Since (P2.1) is a canonical LP problem, it can be solved algorithmically
using any standard method (e.g., the simplex algorithm, the interior point
algorithm, etc.). Once they have been run, an optimal solution x∗1 with the
optimal value β1 = c1 ·x∗1 has been obtained. Then the preemptive scheme
considers the second objective of (P1) and solves another single-objective LP
problem, where the domain has changed, due to the addition of the equality
constraint c1 · x = β1:

Max c2 · x
s.t.

{
x∈Rn : Ax = b, x > 0, c1 · x = β1

} (P2.2)

The algorithm stops either when the last problem has been solved, i.e.,
after considering the last objective cr ·x or when a non-unique solution has
been found in the current solved LP problem. Clearly, this approach is time
consuming.

2.2 The nonpreemptive scheme based on appropriate finite
weights

It has been shown in [36] that there always exists a finite scalar M ∈R such
that the solution of the LMOLP problem (P1) can be found by solving only
one single-objective LP problem having the following form:

Max c̄ · x
s.t. {x∈Rn : Ax = b, x > 0}

(P3)

where

c̄ =

r∑
i=1

ciM−i+1. (2)

This is a powerful theoretical result. However, from the computational point
of view, finding the value of M is not a trivial task. Finding an appropri-
ate value of M and solving the resulting LP problem can be more time
consuming than solving the original problem (P1) following the preemptive
approach. Indeed, the preemptive scheme requires solving r linear program-
ming problems only in the worst case and, in addition, it does not require
the computation of M .
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In Section 4, we present a nonpreemptive approach based on infinitesimal
weights (constructed by using grossone integer powers), that overcomes the
problem of computing M and still requires the solution of only one single-
objective LP problem. Such an LP problem is, however, not a standard one
and thus it will be called gross-LP problem, to avoid any possible confusion
with its standard formulation involving finite numbers only. In the following
section we give an information regarding ¬ methodology that is required to
introduce our nonpreemptive approach based on infinitesimal weights.

3 A brief excursus to the grossone methodology

As said before, in [17, 19, 23, 28, 30, 32] a computational methodology
working with an infinite unit of measure called grossone and indicated by
the numeral ¬ has been introduced as the number of elements of the set
of natural numbers N. On the one hand, this allows one to treat easily
many problems related to the traditional set theory operating with Cantor’s
cardinals by computing the number of elements of infinite sets using ¬-based
numerals. For instance, the following sets that the traditional cardinalities
identify as countable can be measured more precisely. In fact, the set of

even numbers E has ¬
2 elements (see [22, 28, 30, 32]), namely two times less

than the set of natural numbers. The set of integers Z has 2¬+1 elements,
the set G of square natural numbers

G = {x : x = n2, x ∈ N, n ∈ N}

has b
√

¬c elements, etc. Analogously, it becomes possible to discern among
sets having the traditional cardinality of continuum infinite sets with dif-
ferent number of elements. For instance, it follows that the set of numbers
x ∈ [0, 1) expressed in the binary positional numeral system is equal to 2¬

and the set of numbers x ∈ [0, 1) expressed in the decimal positional numeral
system has 10¬ > 2¬ elements (for more examples see [17, 22, 23, 28, 30, 32]).

On the other hand, in the numeral system built upon grossone, there is
the opportunity to treat infinite and infinitesimal numbers in a unique frame-
work and to work with all of them numerically, i.e., by executing arithmetic
operations with floating-point numbers and the possibility to assign concrete
infinite and infinitesimal values to variables. This is one of the differences
with non-standard analysis (see [16]) where non-standard infinite numbers
are discussed but, if K is a non-standard infinite integer, there is no possi-
bility to assign a value to K, it always remains just a symbol without any
concrete numerical value and only symbolic computations can be executed
with it.

The new numeral ¬ is introduced by describing its properties (follow-
ing the same approach that lead to the introduction of the zero in the past
to switch from natural to integer numbers). To introduce grossone, three
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methodological postulates and The Infinite Unit Axiom is added to the ax-
ioms of real numbers (see [17, 22, 23, 28, 30, 32]). In particular, this axiom

states that for any given finite integer n the infinite number ¬
n is integer be-

ing larger than any finite number. Since the axiom is added to the standard
axioms of real numbers, all standard properties (commutative, associative,
existence of inverse, etc.) also apply to ¬ and grossone-based numerals.
Instead of the usual symbol ∞ different infinite and/or infinitesimal numer-
als can be used thanks to ¬. Indeterminate forms are not present and,
for example, the following relations hold for infinite numbers ¬, ¬2 and
infinitesimals ¬−1, ¬−2, as for any other (finite, infinite, or infinitesimal)
number expressible in the new numeral system:

0 ·¬ = ¬ · 0 = 0, ¬−¬ = 0,
¬

¬
= 1, ¬0 = 1, 1¬ = 1, 0¬ = 0,

0 ·¬−1 = ¬−1 · 0 = 0, ¬−1 > ¬−2 > 0, ¬−1−¬−1 = 0, 2¬−¬ = ¬,

¬−1

¬−1
= 1, (¬−1)0 = 1, ¬ ·¬−1 = 1, ¬ ·¬−2 = ¬−1,

5¬−2

¬−2
= 5,

6.1¬2

¬
= 6.1¬,

¬−1

2¬−2
= 0.5¬, ¬2 ·¬−1 = ¬, ¬2 ·¬−2 = 1.

A general way to express infinities and infinitesimals is also provided
in [17, 22, 23, 28, 30, 32] by using records similar to traditional positional
number systems, but with the radix ¬. A number c̃ in this new numeral
system (c̃ will be called gross-scalar from here on) can be constructed by
subdividing it into groups of corresponding powers of ¬ and thus can be
represented as

c̃ = cpm¬pm + ...+ cp1¬p1 + cp0¬p0 + cp−1¬p−1 + ...+ cp−k
¬p−k ,

where m, k ∈ N, exponents pi are called gross-powers (they can be num-
bers of the type of c̃) with p0 = 0, and i = m, ..., 1, 0,−1, ...,−k. Then,
cp

i
6= 0 called gross-digits are finite (positive or negative) numbers, i =

m, ..., 1, 0,−1, ...,−k. In this numeral system, finite numbers are represented
by numerals with the highest gross-power equal to zero, e.g., −6.2 = −6.2¬0.
Infinitesimals are represented by numerals having negative finite or infinite
gross-powers. The simplest infinitesimal is ¬−1 for which ¬−1 ·¬ = 1. We
notice that all infinitesimals are not equal to zero, e.g., ¬−1 > 0. A number
is infinite if it has at least one positive finite or infinite gross-power. For
instance, the number 43.6¬4.56¬ + 16.7¬3.6 − 3.2¬−2.1 is infinite, it consists
of two infinite parts and one infinitesimal part.

In the context of this paper the following definition is important. A
gross-number (gross-scalar) is said purely finite iff the coefficient associated
with the zeroth power of grossone is the only one to be different from zero.
For instance, the number 3.4 is purely finite and 3.4− 3.2¬−2.1 is finite but
not purely finite since it has an infinitesimal part.
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4 The nonpreemptive grossone-based scheme

In order to introduce the scheme we need the following definitions and no-
tations. Hereinafter, an array made of gross-scalars is called gross-array. In
particular, a vector made of gross-scalars is called from here on gross-vector.
The definition of gross-matrix is similar. By extension, gross-vectors and
gross-matrices are called purely finite iff all of their entries are purely finite
gross-numbers. Let us recollect our notations now:

• Italics lowercase (e.g. n) is a purely finite real scalar.

• Boldface lowercase (e.g. x) is a purely finite real vector.

• Boldface uppercase (e.g. A) is a purely finite real matrix.

• Italics lowercase with tilde (e.g. c̃) is a gross-scalar.

• Boldface lowercase with tilde (e.g. ỹ) is a gross-vector.

Let us introduce now the nonpreemptive grossone-based scheme follow-
ing the lexicographic ¬-based approach introduced in [29] and in a recent
study [2]. It should be stressed that it is supposed hereinafter that the orig-
inal problem (P1) has been stated using purely finite numbers only. This
assumption is not restrictive from the practical point of view since all the
LMOLP problems considered traditionally are of this kind. However, since
we are now in the framework of ¬-based numbers, this assumption should
be explicitly stated.

To state the problem (P4), we reformulate (P3) by making use of gross-
scalars and gross-vectors and is defined as follows:

Max c̃x

s.t. {x∈Rn : Ax = b, x > 0} ,
(P4)

where c̃ is a row-wise gross-vector having n gross-scalar components:

c̃ =
r∑

i=1

ci¬−i+1 (3)

and c̃x is the gross-scalar obtained by multiplying the gross-vector c̃ by
purely finite vector x

c̃x = (c1 · x)¬0 + (c2 · x)¬−1 + ...+ (cr · x)¬−r+1, (4)

where (4) can be equivalently written in the extended form as

c̃x = (c11x1+...+c
1
nxn)¬0+(c21x1+...+c

2
nxn)¬−1+...+(cr1x1+...+c

r
nxn)¬−r+1.
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The fundamental difference between the definition of c̃ in (3) with re-
spect to the definition of c̄ in (2) is that c̃ does not involve any unknown.
More precisely, it does not require the specification of a real scalar value,
like the value of M in (P3). However, this advantage leads to the fact that
standard algorithms (like the simplex algorithm or the interior point algo-
rithm), traditionally used for solving (P3), can no longer be used in this
case since ¬-based numbers are involved in the definition of the objective
function. There will be shown in the next section that it is still possible
to obtain optimality conditions and to introduce and implement a gross-
simplex algorithm (a generalization of the traditional simplex algorithm to
the case of ¬-based numbers) able to solve problem (P4).

5 Theoretical results

In this section, first, it is proved that problems (P1) and (P4) are equivalent
and then, second, optimality conditions are established. Before giving the
equivalence theorem, the following three lemmas are required.

The first lemma states that all the optimal solutions of (P4) are vertices
or belong to the convex hull of vertices, where the set of all the optimal
solutions for a generic problem P is denoted, from hereafter, by the symbol
Ω(P).

Lemma 1. Each x∗ ∈ Ω(P4) is a vertex or lies on the convex hull of the
optimal vertices.

Proof. Since the objective function of problem (P4) is linear in x, the as-
sociated level sets (c̃x = ṽ) are hyper-planes. Thus the maximum, for a
bounded and non-empty polytope S describing the domain of the problem
must be on a vertex (or belong to the convex hull of the optimal vertices),
for the same reasons for which the maximum of standard single-objective LP
problems is located on a vertex or in the convex hull of the optimal vertices.
In this case, similarly to standard LP, it follows that: (i) not all the vertices
of (P4) are optimal, and (ii) not all the basic solutions are vertices.

The next lemma states that all the optimal solutions of (P1) reach the
same (gross-scalar) objective value for problem (P4).

Lemma 2. For any x∗ ∈ Ω(P1) it follows c̃x∗ = ṽ (ṽ being a constant
gross-scalar).

Proof. Let x∗ be a generic optimal solution belonging to Ω (P1), then from
(4) we have that the objective value of the problem (P4) associated to it is:

c̃x∗ = (c1 · x∗)¬0 + (c2 · x∗)¬−1 + ...+ (cr · x∗)¬−r+1.
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We can observe that:

ci · x∗ = ki∈R, i∈{1, ..., r},

due to the fact that x∗ is optimal for (P1) and this problem has been for-
mulated using purely finite numbers only. Thus we have

c̃x∗ = k1¬0 + k2¬−1 + ...+ kr¬−r+1 = ṽ.

The next lemma is the last step in preparing the proof of the equivalence
between (P1) and (P4).

Lemma 3. For all x∗∈Ω(P1) and any vertex x̂ of S such that x̂ /∈ Ω(P1),
it follows

c̃x̂ < c̃x∗.

Proof. Let x̂ be a vertex of Swhich is not optimal for (P1). Thus, there exists
an index q∈{1, ..., r} such that

ci · x̂ = ci · x∗, ∀i∈{1, ..., q − 1},

but
cq · x̂ < cq · x∗.

This implies that

c̃x∗ − c̃x̂ =
r∑

i=q

¬−i+1(ci · x∗ − ci · x̂).

The expression above can be also expanded as follows

c̃x∗ − c̃x̂ = ¬−q+1(cq · x∗ − cq · x̂) + ¬−(q+1)+1(cq+1 · x∗ − cq+1 · x̂) + ...

+ ¬−r+1(cr · x∗ − cr · x̂).

Since ¬−q+1(cq ·x∗−cq · x̂) > 0, it follows that (c̃x∗ − c̃x̂) is strictly positive
too, since r is finite. Indeed, adding a finite number of infinitesimal contri-
butions of orders of ¬ higher than −q+1 will keep the sum strictly positive,
even when these contributions are negative in sign, due to the property of
grossone:∣∣¬−q+1(cq · x∗ − cq · x̂)

∣∣ >
∣∣¬−q(cq+1 · x∗ − cq+1 · x̂)

∣∣ + ...+∣∣¬−r+1(cr · x∗ − cr · x̂)
∣∣ .
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We are now ready to prove that any solution to (P1) is also a solution
to (P4), and vice-versa.

Theorem 1 (Equivalence). x∗ ∈ Ω(P1) iff x∗ ∈ Ω(P4).

Proof. ⇒ If x∗ is optimal for (P1), then c̃x∗ = ṽ due to lemma 2. There-
fore, according to lemma 1 and 3, x∗ is also optimal for (P4).
⇐ If x∗ is optimal for (P4), then due to lemma 1, it belongs to the

convex hull of some vertices. But from lemma 3 it follows that all the vertices
of this kind are optimal solutions to problem (P1).

Remark 1 (Equivalence of problems (P3) and (P4)). Since we have proved
that problems (P4) and (P1) are equivalent, and since in [36] it has been
proved that problems (P3) and (P1) are equivalent, it follows that problems
(P4) and (P3) are equivalent to each other as well.

6 The gross-simplex algorithm

The single-objective gross-LP problem formulated in (P4) using grossone
can be solved using the gross-simplex algorithm here described, provided
that the duality theory is extended to the case of gross-scalars and gross-
vectors.

The dual problem of (P4) is the following

Min ỹb

s.t. {ỹ : ỹA > c̃ } ,
(P5)

where ỹ = [ỹ1, ..., ỹm] is a row-wise m-dimensional gross-vector, ỹA an
n-dimensional gross-vector, and ỹb a gross-scalar.
The domain of (P5) is the gross-polytope D̃ defined as:

D̃ ≡ {ỹ : ỹA > c̃ } .

In the following we will assume that D̃ is bounded and non-empty, as we
have assumed for S.

Since optimality conditions are the core of the simplex algorithm, we
need to prove optimality conditions in our context.

Definition 1 (Definition of optimality for the gross-primal problem). A
point x∗ is optimal for the problem (P4) iff c̃x∗ > c̃x ∀x∈S.

Definition 2 (Definition of optimality for the gross-dual problem). A point
ỹ∗ is optimal for the problem (P5) iff ỹ∗b 6 ỹb ∀ỹ∈D̃.
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We need now the following lemma.

Lemma 4 (weak duality). ∀x∈S and ∀ ỹ∈D̃, it follows that c̃x 6 ỹb.

Proof. Since x∈S, Ax = b. Pre-multiplying both by ỹ, we have

ỹAx = ỹb. (5)

Now, since ỹ∈D̃, we know that ỹA > c̃. By post-multiplying the latter
by x (being x > 0), we have:

ỹAx > c̃x.

By combining it with (5) we obtain ỹb > c̃x.

Theorem 2 (Optimality condition). If x∗∈S, ỹ∗∈D̃ and c̃x∗ = ỹ∗b, then
it follows that x∗∈Ω(P1) and ỹ∗∈Ω(P5).

Proof. It is an immediate consequence of the weak duality lemma 4.

We are now ready to introduce the gross-simplex algorithm (see Algo-
rithm 1) which exploits the theoretical results presented above. Notice that
the algorithm needs a first feasible basis B. It can be found by solving
the standard auxiliary problem analogously to the case where the objective
function is only one (no gross-simplex required to solve it).

Remark 2. First, let us notice that on Step 2 of Algorithm 1 no divi-
sions between grossone-based numerals are required. Second, it could be
argued that, in order to limit numerical errors, the inversion of AB could be
avoided, by using its LU decomposition, an in any other simplex algorithm
implementation. However, in this work we do use the inverse, just because
we want to make the presentation of the algorithm easier to read. Finally,
please, notice that the unboundedness of the problem mentioned in Step 4
of Algorithm 1 cannot happen due to our initial assumptions.
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Algorithm 1 The gross-simplex algorithm

Step 0. The user has to provide the initial set B of basic indices.

Step 1. Solve the system ỹAB = c̃B (where AB is the sub-matrix obtained
by A by considering the columns indexed by B).

This can be easily calculated as ỹ = AB
−T c̃B where AB

−T is an

abbreviation for
(
AB
−1)T , ỹ is a gross-vector obtained by linearly

combining the gross-vector c̃B using the purely finite scalar elements
in A−TB .

Step 2. Compute s̃ = c̃N −AT
N ỹ (where N is the complementary set of B)

and then select the maximum (gradient rule). When this maximum is
negative (being it finite or infinitesimal), it means that we are done (the
current solution is optimal) and thus the algorithm stops. Otherwise,
the position of the maximum in the gross-vector s̃ is the index k of
the entering variable N(k).

Step 3. Solve the system ABd = AN(k).

Step 4. Find the largest t such that x∗B − td > 0. If there is not such
a t, then the problem is unbounded (STOP); otherwise, at least one
component of x∗B − td equals zero and the corresponding variable is
the leaving variable. In case of ties, use the Lexicographic Pivoting
Rule [3] to break them.

Step 5. Update B and N and return to Step 1.

7 Experimental Results

Example 1. The first example is a little variant to the two-dimensional
problem with three objectives described in [37]:

LexMax 8x1 + 12x2, 4x1 + 10x2, x1 + x2

s.t. 2x1 + x2 ≤ 120

2x1 + 3x2 ≤ 210

4x1 + 3x2 ≤ 270

x1 + 2x2 ≥ 60

x1, x2 ≥ 0

The polygon S associated to this problem is shown in Figure 1. It can be
seen that the first objective vector c1 = [8, 12] is orthogonal to segment [α, β]
(α = (0, 70), β = (30, 50)) shown in the same figure. Thus all the points
laying on this segment are optimal. Since the solution is not unique, there
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Figure 1: An example in two dimensions with three objectives. All the
points in the segment [α, β] are optimal for the first objective, while point β
is the unique lexicographic optimum for the given problem (β = (30, 50) ).

is the chance to try to improve the second objective vector (c2 = [14, 10])
without deteriorating the first one function. The point that maximizes the
second objective is β, associated to solution x∗ = [30, 50]T . Since now the
solution is unique, the third objective function can not be taken into account.
Thus the lexicographic optimal solution for the problem is x∗ = [30, 50]T .

Before running the gross-simplex algorithm we had to transform the
problem into the following one, after converting the constraints into equality
constraints by adding slack variables x3, x4, x5, and x6:

LexMax 8x1 + 12x2, 4x1 + 10x2, x1 + x2

s.t. 2x1 + x2 + x3 = 120

2x1 + 3x2 + x4 = 210

4x1 + 3x2 + x5 = 270

− x1 − 2x2 + x6 = −60

xi ≥ 0 i = 1, ..., 6

(6)

The gross-simplex algorithm has been run on the problem (6), by using
the initial basis B = {2, 3, 4, 5} (N is therefore {1, 6}). The initial solution
associated to the initial basis is: x = [0, 30, 90, 120, 180, 0]T , which corre-
sponds to the point (0, 30) in Figure 1. Then the algorithm computes s̃ as
c̃N −AT

N ỹ giving

s̃ =

[
2¬0 + 9¬−1 + 0.5¬−2

6¬0 + 5¬−1 + 0.5¬−2

]
.

Thus, according to the gradient rule for choosing the entering variable,
the one in N having the second index is selected, i.e., x6, which is the one
associated to the maximum constraint violation: 6¬0+5¬−1+0.5¬−2. The
leaving index, computed according to the lexicographic pivoting rule is the
third, i.e., variable x4. Thus the second base used is B = {2, 3, 6, 5}. The
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gross-objective function is c̃x = 360¬0 + 300¬−1 + 30¬−2 and, of course,
coincides with that of the dual ỹb (when ỹ will be also feasible, we will be
at the optimum and the algorithm will end).

The solution associated to this second base is x = [0, 70, 50, 0, 60, 80]T ,
while the new value for s̃ is

s̃ =

[
7.33¬−1 + 0.33¬−2

−4¬0 − 3.33¬−1 − 0.33¬−2

]
.

Again, according to the gradient rule, the next entering index is the first,
i.e., variable x1. It is interesting to note that in this case the constraint viola-
tion (a positive entry in s̃) is not finite, as in previous case, but infinitesimal:
7.33¬−1+0.33¬−2. The leaving index is the fourth and thus the leaving vari-
able is x5. Therefore, the next basis (the third) is B = {2, 3, 6, 1}. The
gross-objective function now equals to 840¬0 + 700¬−1 + 70¬−2.

The solution associated to the third base is x = [30, 50, 10, 0, 0, 70]T ,
while the new value for s̃ is

s̃ =

[
−3.67¬−1 − 0.17¬−2

−4¬0 + 0.33¬−1 − 0.17¬−2

]
.

Since all the entries of s̃ are negative (one is infinitesimal and one is
finite), we are done. In fact, the solution found (once the slack variables are
discarded), is the correct one, i.e., x∗ = [30, 50]T . Furthermore, the gross-
objective function at the end equals to c̃x = ỹb = 840¬0+920¬−1+80¬−2.

Example 2. This illustrative example is in three dimensions with three
objectives:

LexMax x1, x2, x3

s.t.
{
x∈R3 : 0 ≤ xi ≤ 1, i = 1, ..., 3

} (7)

with the domain being the cube shown in Figure 2.
Let us understand first by a simple reasoning where the solution is lo-

cated. It can be immediately seen that by considering the first objective
alone (maximize x1), the maximum is the face of the cube determined by
the vertices α, β, γ, δ (see Figure 2). Since the optimum is not unique, the
second objective function can be considered in order to improve it without
deteriorating the first objective. Then, all the points within the segment
[β, γ] are all optimal for the second objective. Again, the optimum in not
unique, and thus we can consider the third objective, which allows us to
select the point γ as the unique solution that maximizes all three objectives,
i.e., the point γ is the lexicographic optimum to the given problem.

Before solving the problem, we had to change its form in order to convert
the constraints from inequalities to equalities, by adding three slack variables
x4, x5 and x6. The gross-simplex algorithm has been run on the problem

14



Figure 2: In the example (7) all the points belonging to the face of the
cube determined by the vertices α, β, γ, δ are optimal according to the
first objective (max of x1). The segment [β, γ] contains all the points that
optimize the second objective (max of x2) without deteriorating the first.
Finally, the point γ is the lexicographic optimum ( γ=(1, 1, 1) ).

(7), by using the initial basis B = {4, 5, 6} (N is therefore {1, 2, 3}). The
corresponding initial solution is x = [0, 0, 0, 1, 1, 1]T , which corresponds to
the origin of Figure 2. The first s̃ gross-vector computed is

s̃ =

 1¬0

1¬−1

1¬−2


from which the algorithm has selected the first index, meaning that x1 is
the entering variable (according to the gradient rule). The leaving variable
in this case is x4. Thus the second base is B = {1, 5, 6} .

The next solution (associated to the second base) is x = [1, 0, 0, 0, 1, 1]T

(point α of Figure 2) and the next s̃ is:

s̃ =

−1¬0

1¬−1

1¬−2

 .
This time the most positive entry is the second, and thus the entering vari-
able is x2 and the leaving one is x5. The next base is {1, 2, 6} and the new
candidate solution is x = [1, 1, 0, 0, 0, 1]T (point β of Figure 2), while the
next s̃ is:

s̃ =

 −1¬0

−1¬−1

1¬−2

 .
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Algorithm 2 Generation of a randomly rotated hypercube in n dimensions

Step 1. Let Ax ≤ b be the initial, unrotated hypercube, in n-dimensions.
Let C be the matrix containing the objective vectors, row by row:

C =


c1

c2

...
cn

 =


1 0 .. 0
0 1 ... 0
... ... ... ...
0 0 ... 1

 ∈ Rn×n

Step 2. Generate a random rotation matrix Q. It can be computed
using a QR factorization utility, applied to a random matrix T.
In particular, T must be an n-by-n matrix having entries ran-
domly generated according to the normal distribution (zero mean and
unitary variance). In Matlab the matrix Q can be obtained in this way:

T = randn(n);

[Q, R] = qr(T);

Step 3. Rotate the polytope: A′ = AQ (b does not change under rotations:
b′ = b) C′ = CQ (C′=Q, since C is an identity matrix);

Step 4. Transform the polytope from the form A′x′ ≤ b′ to the form
{A′′x′′ = b′′,x′′ ≥ 0}

Step 5. Compute the lexicographic optimum. It can be obtained starting
from the lexicographic optimum of the unrotated problem (which is
known to be x∗ = [1, 1, ..., 1]T , a vector of n ones), multiplied by the
same rotation matrix: x′∗ = QTx∗.

In this situation, there exists still one positive component, meaning that
there is the chance to improve the objective function. The entering variable
is x3, while the leaving one is x6. Eventually we get x = [1, 1, 1, 0, 0, 0]T ,
which is the optimal one, since now s̃ has no positive entries:

s̃ =

 −1¬0

−1¬−1

−1¬−2

 .
The final solution corresponds to the point γ of Figure 2 and the final gross-
objective function value is 1¬0 + 1¬−1 + 1¬−2.
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Example 3a. This example is a generalization of previous example to
the case of five objectives in R5. To make the problem less obvious, a random
rotation to the hypercube has been added. The hypercube considered is now
centered at the origin, to better handle its rotation

S ≡
{
x∈R5 : −1 ≤ xi ≤ 1, i = 1, ..., 5

}
.

The problem consists of the lexicographic optimization of x1, x2, ..., x5, but
the objectives will be affected by the rotation, as well, making the objective
functions more appealing. The method applied to generate a randomly
rotated hypercube and the corresponding objective vectors is shown above
as Algorithm 2.

The Algorithm 2 has been applied: the generated rotation matrix Q is
reported in Appendix.

Using this matrix, the following problem (A′,b′,C′) has been generated:

LexMax − 0.37x1 − 0.03x2 + 0.41x3 − 0.83x4 − 0.08x5,

− 0.48x1 − 0.77x2 + 0.23x3 + 0.36x4 − 0.04x5,

+ 0.34x1 − 0.38x2 − 0.33x3 − 0.23x4 − 0.76x5,

+ 0.43x1 + 0.10x2 + 0.82x3 + 0.24x4 − 0.28x5,

+ 0.58x1 − 0.51x2 + 0.04x3 − 0.27x4 + 0.58x5

s.t.
{
x′∈R5 : A′x′ ≤ b′

}
(8)

where A′ and vector b′ are reported in Appendix as well (C′ is not reported,
being it equal to Q).

The lexicographic optimum for this problem is:

x′∗ = QTx∗ = [0.50, −1.58, 1.16, −0.74, −0.59]T .

Then the problem has been transformed in the form {A′′x′′ = b′′,x′′ ≥ 0}
and the gross-simplex algorithm has been run. After 13 steps, the algorithm
has found the correct lexicographic optimum.

The list of the visited vertices, along with the objective function, is shown
in Table 1.
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Table 1: Iterations performed by the gross-simplex algorithm while solving
problem (8) with five objectives.
Iter. x′ gross-objective function c̃x′

1 [−0.50, 1.58,−1.16, 0.74, 0.59]T −1¬0 − 1¬−1 − 1¬−2 − 1¬−3 − 1¬−4

2 [−0.83, 1.56,−0.80, 0.00, 0.52]T −0.11¬0 − 1¬−1 − 1¬−2 − 1¬−3 − 1¬−4

3 [−1.23, 1.52,−0.35,−0.93, 0.43]T 1¬0 − 1¬−1 − 1¬−2 − 1¬−3 − 1¬−4

4 [−1.96, 0.36, 0.00,−0.39, 0.37]T 1¬0 + 0.52¬−1 − 1¬−2 − 1¬−3 − 1¬−4

5 [−2.19, 0.00, 0.11,−0.22, 0.35]T 1¬0 + 0.98¬−1 − 1¬−2 − 1¬−3 − 1¬−4

6 [−2.20,−0.01, 0.11,−0.22, 0.35]T 1¬0 + 1¬−1 − 1¬−2 − 1¬−3 − 1¬−4

7 [−2.08,−0.14, 0.00,−0.29, 0.10]T 1¬0 + 1¬−1 − 0.67¬−2 − 1¬−3 − 1¬−4

8 [−2.04,−0.19,−0.04,−0.32, 0.00]T 1¬0 + 1¬−1 − 0.54¬−2 − 1¬−3 − 1¬−4

9 [−1.51,−0.77,−0.55,−0.67,−1.17]T 1¬0 + 1¬−1 + 1¬−2 − 1¬−3 − 1¬−4

10 [−1.22,−0.70, 0.00,−0.51,−1.36]T 1¬0 + 1¬−1 + 1¬−2 − 0.33¬−3 − 1¬−4

11 [−0.66,−0.57, 1.09,−0.19,−1.74]T 1¬0 + 1¬−1 + 1¬−2 + 1¬−3 − 1¬−4

12 [0.00,−1.14, 1.13,−0.50,−1.09]T 1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 0.13¬−4

13 [0.50,−1.58,1.16,−0.74,−0.59]T 1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4

Example 3b. This example considers ten objectives in R10 and applies
the rotations described above in order to construct more interesting prob-
lems. The corresponding rotation matrix Q, matrix A′, and vector b′ are
reported in Appendix. The resulting problem (9) can be written as follows:

LexMax c′
1 · x′, c′

2 · x′, ..., c′
10 · x′,

s.t.
{
x′∈R10 : A′x′ ≤ b′

}
. (9)

where c′1 is the first row of C′, c′2 is its second row, and so on (C′ being
equal to Q).

The lexicographic optimum for this problem is:

x′
∗

= [−1.62, 1.27, 1.57, −1.05, −0.40, −0.57, −0.55, −0.61, −0.99, 0.20]T .

The gross-simplex algorithm has been applied and the optimum has been
obtained after 29 iterations, as shown in the following Table 2.
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Table 2: Iterations performed by gross-simplex algorithm for problem (9).
Iter. x′ (gross-objective function c̃x′)
1 [1.62,−1.27,−1.57, 1.05, 0.40, 0.57, 0.55, 0.61, 0.99,−0.20]T ,

(−1¬0 − 1¬−1 − 1¬−2 − 1¬−3 − 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
2 [0.17,−2.04,−1.04, 1.49, 0.44, 1.24, 0.43, 0.08, 0.76,−0.04]T ,

(1¬0 − 1¬−1 − 1¬−2 − 1¬−3 − 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
3 [0.20,−2.10,−1.00, 1.42, 0.35, 1.17, 0.45, 0.00, 0.65,−0.09]T ,

(1¬0 − 0.8¬−1 − 1¬−2 − 1¬−3 − 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
4 [0.31,−2.37,−0.87, 1.13, 0.00, 0.87, 0.52,−0.32, 0.23,−0.29]T ,

(1¬0 + 0.1¬−1 − 1¬−2 − 1¬−3 − 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
5 [0.36,−2.52,−0.80, 0.97,−0.20, 0.70, 0.56,−0.50, 0.00,−0.40]T ,

(1¬0 + 0.5¬−1 − 1¬−2 − 1¬−3 − 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
6 [0.42,−2.66,−0.73, 0.82,−0.39, 0.54, 0.59,−0.67,−0.23,−0.51]T ,

(1¬0 + 1¬−1 − 1¬−2 − 1¬−3 − 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
7 [0.43,−1.88,−0.87, 0.44, 0.00, 0.95, 0.53,−1.70,−0.30,−0.63]T ,

(1¬0 + 1¬−1 + 0.5¬−2 − 1¬−3 − 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
8 [0.43,−1.60,−0.92, 0.31, 0.14, 1.10, 0.51,−2.07,−0.32,−0.67]T ,

(1¬0 + 1¬−1 + 1¬−2 − 1¬−3 − 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
9 [0.35,−1.63,−0.92, 0.00, 0.17, 1.13, 0.44,−1.97,−0.31,−0.51]T ,

(1¬0 + 1¬−1 + 1¬−2 − 0.6¬−3 − 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
10 [0.10,−1.74,−0.94,−0.99, 0.26, 1.20, 0.21,−1.67,−0.29, 0.00]T ,

(1¬0 + 1¬−1 + 1¬−2 + 0.6¬−3 − 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
11 [0.02,−1.78,−0.95,−1.32, 0.29, 1.23, 0.13,−1.57,−0.28, 0.17]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 − 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
12 [0.00,−1.77,−0.95,−1.33, 0.29, 1.22, 0.14,−1.56,−0.27, 0.15]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 − 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
13 [−0.10,−1.71,−0.94,−1.38, 0.30, 1.19, 0.17,−1.49,−0.26, 0.00]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 − 0.8¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
14 [−0.96,−1.22,−0.90,−1.77, 0.32, 0.96, 0.45,−0.96,−0.12,−1.23]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 − 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
15 [−1.33,−0.84,−0.82,−1.50, 1.19, 0.00, 0.85,−0.89,−0.91,−0.66]T ,

(1.0¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 0.8¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
16 [−1.38,−0.79,−0.81,−1.47, 1.30,−0.12, 0.90,−0.88,−1.02,−0.59]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 − 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
17 [−1.64,−0.51,−0.23,−1.47, 0.86,−0.88, 0.94,−1.33, 0.00,−0.20]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 0.6¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
18 [−1.70,−0.44,−0.10,−1.47, 0.76,−1.06, 0.95,−1.43, 0.24,−0.11]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 1¬−6 − 1¬−7 − 1¬−8 − 1¬−9)
19 [−1.68,−0.40, 0.00,−1.47, 0.75,−1.02, 0.99,−1.40, 0.21,−0.10]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 1¬−6 − 0.9¬−7 − 1¬−8 − 1¬−9)
20 [−1.47,−0.09, 0.81,−1.52, 0.62,−0.64, 1.34,−1.16, 0.01, 0.00]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 1¬−6 + 0.2¬−7 − 1¬−8 − 1¬−9)
21 [−1.46,−0.08, 0.83,−1.52, 0.62,−0.62, 1.35,−1.15, 0.00, 0.00]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 1¬−6 + 0.3¬−7 − 1¬−8 − 1¬−9)
22 [−1.41, 0.00, 1.02,−1.53, 0.59,−0.53, 1.43,−1.10,−0.05, 0.03]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 1¬−6 + 0.5¬−7 − 1¬−8 − 1¬−9)
23 [−1.31, 0.14, 1.38,−1.55, 0.53,−0.36, 1.59,−0.99,−0.14, 0.07]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 1¬−6 + 1¬−7 − 1¬−8 − 1¬−9)
24 [−1.28, 0.18, 1.53,−1.52, 0.60,−0.42, 1.24,−0.96,−0.19, 0.00]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 1¬−6 + 1¬−7 − 0.6¬−8 − 1¬−9)
25 [−1.14, 0.32, 2.08,−1.40, 0.84,−0.64, 0.00,−0.86,−0.37,−0.26]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 1¬−6 + 1¬−7 + 0.9¬−8 − 1¬−9)
26 [−1.13, 0.33, 2.13,−1.38, 0.87,−0.66,−0.12,−0.85,−0.39,−0.29]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 1¬−6 + 1¬−7 + 1¬−8 − 1¬−9)
27 [−1.42, 0.88, 1.80,−1.19, 0.12,−0.61,−0.37,−0.71,−0.74, 0.00]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 1¬−6 + 1¬−7 + 1¬−8 + 0.2¬−9)
28 [−1.47, 0.97, 1.75,−1.16, 0.00,−0.60,−0.41,−0.69,−0.80, 0.05]T ,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 1¬−6 + 1¬−7 + 1¬−8 + 0.4¬−9)
29 [−1.62,1.27,1.57,−1.05,−0.40,−0.57,−0.55,−0.61,−0.99,0.20]T,

(1¬0 + 1¬−1 + 1¬−2 + 1¬−3 + 1¬−4 + 1¬−5 + 1¬−6 + 1¬−7 + 1¬−8 + 1¬−9)
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Appendix

This appendix reports information related to Example 3a and 3b. In order
to construct the problem (8) of experiment 3a (the one with 5 dimensions)
the following rotation matrix Q, matrix A′, and vector b′ have been used:

Q =


−0.37, −0.03, 0.41, −0.83, −0.08
−0.48, −0.77, 0.23, 0.36, −0.04
0.34, −0.38, −0.33, −0.23, −0.76
0.43, 0.10, 0.82, 0.24, −0.28
0.58, −0.51, 0.04, −0.27, 0.58

 ,

A′ =



−0.37, −0.03, 0.41, −0.83, −0.08
−0.48, −0.77, 0.23, 0.36, −0.04
0.34, −0.38, −0.33, −0.23, −0.76
0.43, 0.10, 0.82, 0.24, −0.28
0.58, −0.51, 0.04, −0.27, 0.58
0.37, 0.03, −0.41, 0.83, 0.08
0.48, 0.77, −0.23, −0.36, 0.04
−0.34, 0.38, 0.33, 0.23, 0.76
−0.43, −0.10, −0.82, −0.24, 0.28
−0.58, 0.51, −0.04, 0.27, −0.58


,

b′ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T .

The following matrices and vector are the ones related to problem (9) of
experiment 3b (the one with 10 dimensions):

Q =



−0.72, −0.38, 0.27, 0.22, 0.02, 0.34, −0.06, −0.26, −0.11, 0.08
0.12, −0.31, 0.15, −0.34, −0.42, −0.35, 0.08, −0.38, −0.49, −0.24
0.00, 0.53, −0.09, −0.26, 0.26, 0.28, −0.04, −0.70, −0.05, −0.08
−0.21, −0.09, −0.02, −0.81, 0.08, 0.06, −0.19, 0.25, 0.02, 0.42
−0.49, 0.28, 0.02, −0.22, 0.01, −0.14, 0.16, 0.30, 0.08, −0.70
−0.21, 0.21, 0.05, 0.15, 0.49, −0.54, 0.23, 0.04, −0.45, 0.32
−0.16, 0.18, 0.36, 0.00, −0.27, −0.47, 0.03, −0.28, 0.63, 0.24
0.20, 0.29, 0.74, −0.04, −0.12, 0.35, 0.32, 0.22, −0.19, 0.09
0.09, 0.10, 0.38, 0.08, 0.17, −0.15, −0.85, 0.07, −0.12, −0.18
−0.25, 0.47, −0.28, 0.17, −0.63, 0.05, −0.21, 0.12, −0.30, 0.25


,

20



A′ =



−0.72, −0.38, 0.27, 0.22, 0.02, 0.34, −0.06, −0.26, −0.11, 0.08
0.12, −0.31, 0.15, −0.34, −0.42, −0.35, 0.08, −0.38, −0.49, −0.24
0.00, 0.53, −0.09, −0.26, 0.26, 0.28, −0.04, −0.70, −0.05, −0.08
−0.21, −0.09, −0.02, −0.81, 0.08, 0.06, −0.19, 0.25, 0.02, 0.42
−0.49, 0.28, 0.02, −0.22, 0.01, −0.14, 0.16, 0.30, 0.08, −0.70
−0.21, 0.21, 0.05, 0.15, 0.49, −0.54, 0.23, 0.04, −0.45, 0.32
−0.16, 0.18, 0.36, 0.00, −0.27, −0.47, 0.03, −0.28, 0.63, 0.24
0.20, 0.29, 0.74, −0.04, −0.12, 0.35, 0.32, 0.22, −0.19, 0.09
0.09, 0.10, 0.38, 0.08, 0.17, −0.15, −0.85, 0.07, −0.12, −0.18
−0.25, 0.47, −0.28, 0.17, −0.63, 0.05, −0.21, 0.12, −0.30, 0.25
0.72, 0.38, −0.27, −0.22, −0.02, −0.34, 0.06, 0.26, 0.11, −0.08
−0.12, 0.31, −0.15, 0.34, 0.42, 0.35, −0.08, 0.38, 0.49, 0.24
−0.00, −0.53, 0.09, 0.26, −0.26, −0.28, 0.04, 0.70, 0.05, 0.08
0.21, 0.09, 0.02, 0.81, −0.08, −0.06, 0.19, −0.25, −0.02, −0.42
0.49, −0.28, −0.02, 0.22, −0.01, 0.14, −0.16, −0.30, −0.08, 0.70
0.21, −0.21, −0.05, −0.15, −0.49, 0.54, −0.23, −0.04, 0.45, −0.32
0.16, −0.18, −0.36, −0.00, 0.27, 0.47, −0.03, 0.28, −0.63, −0.24
−0.20, −0.29, −0.74, 0.04, 0.12, −0.35, −0.32, −0.22, 0.19, −0.09
−0.09, −0.10, −0.38, −0.08, −0.17, 0.15, 0.85, −0.07, 0.12, 0.18
0.25, −0.47, 0.28, −0.17, 0.63, −0.05, 0.21, −0.12, 0.30, −0.25



,

b′ = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T .
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