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Abstract

This paper is devoted to numerical global optimization algorithms applying
several ideas to reduce the problem dimension. Two approaches to the di-
mensionality reduction are considered. The first one is based on the nested
optimization scheme that reduces the multidimensional problem to a family of
one-dimensional subproblems connected in a recursive way. The second approach
as a reduction scheme uses Peano-type space-filling curves mapping multidi-
mensional domains onto one-dimensional intervals. In the frameworks of both
the approaches, several univariate algorithms belonging to the characteristical
class of optimization techniques are used for carrying out the one-dimensional
optimization. Theoretical part of the paper contains a substantiation of global
convergence for the considered methods. The efficiency of the compared global
search methods is evaluated experimentally on the well-known GKLS test class
generator used broadly for testing global optimization algorithms. Results for
representative problem sets of different dimensions demonstrate a convincing
advantage of the adaptive nested optimization scheme with respect to other
tested methods.
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1. Introduction

In this paper the black-box global optimization problem

f∗ = f(y∗) = min
y∈P

f(y), (1)

P = {y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N}, (2)

is considered as a problem of finding the global minimum value f∗ and global
minimizers y∗ ∈ P of a real-valued multivariate function f(y) in the hyperparal-
lelepiped (2) of the Euclidean space RN . The objective function f(y) is supposed
to satisfy in the domain P the Lipschitz condition

|f(y′)− f(y′′)| ≤ L‖y′ − y′′‖, y′, y′′ ∈ P, (3)

where L > 0 is a finite constant and ‖ ∗ ‖ denotes the Euclidean norm in RN . In
general case, these problems are multiextremal and non-smooth.

The global optimization problem under consideration has been drawing
attention of many researchers (see, for example, fundamental monographs [1–6]).
On the one hand, problems of this kind are very important from the practical
point of view because they arise often in scientific and engineering applications
(see, for instance, [4, 7–13]). On the other hand, Lipschitzian problems (1)–(2)
are very interesting for theoretical study because they have a rich variety of
properties and, as a consequence, there is no a “universal” algorithm for solving
multiextremal problems. These circumstances generate many fruitful approaches
for solving this class of problems. Given approaches are based on ideas of different
nature (both stochastic [5, 6, 14–17] and deterministic [18–30]), but, in any case,
numerical methods of searching for the global optimum are proposed within the
frameworks of approaches as a tool for getting a solution sought.

As it was discussed in [5], the global optimum is an integral characteristic
of the problem, i.e., in order to make sure that a point y∗ ∈ P is the global
minimizer of the problem (1)–(2) it is required to compare the value f(y∗) with
values of the objective function at all points of the domain P , but not in a
vicinity of y∗ only. As a result, when minimizing an essentially multiextremal
function, a numerical global optimization method has to build a grid (random
or regular) in the feasible domain and the number of grid nodes increases
exponentially when rising the problem dimension. This peculiarity causes the
substantial complexity of multiextremal problems and dimension is a crucial
factor influencing significantly the efficiency of global optimization algorithms.

In this situation, approaches to elaboration of computational schemes reduc-
ing the dimension are widely used in the multiextremal optimization. Here we
consider two approaches in which the initial multidimensional problem (1)–(2)
is reduced to one or several univariate subproblems solved by efficient one-
dimensional algorithms. The first approach applies the nested optimization
scheme in its classical version [31–37] and in its generalization — the adap-
tive nested scheme [38, 39]. The second approach is based on Peano space-
filling curves mapping the multidimensional domain (2) onto an interval in
one-dimensional space R1 [5, 40–46].
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The rest of the paper is organized in the following way. Section 2 describes
the basic structures of the reduction schemes mentioned above and the univariate
characteristical methods of global optimization to be applied within the reduction
structures for solving the internal one-dimensional subproblems. Section 3 is
devoted to a theoretical substantiation of the convergence for multidimensional
methods combining the reduction schemes with characteristical methods of
global search and contains both the known and new theoretical results. Section 4
presents experimental results of efficiency comparison for the methods described
in previous sections on representative sets of multiextremal test functions of vari-
ous dimensions belonging to the popular test class GKLS [47] with a controllable
complexity. Finally, Section 5 contains a brief conclusion.

2. Schemes of dimensionality reduction

The first approach to dimensionality reduction called the scheme of nested
optimization is based on the well-known relation (see, e.g., [5, 25, 31])

min
y∈P

f(y) = min
y1∈[a1,b1]

. . . min
yN∈[aN ,bN ]

f(y1, . . . , yN ). (4)

In order to describe the scheme let us define a family of reduced functions as
follows:

fN (y) ≡ f(y), (5)

f i(y1, . . . , yi) = min
yi+1∈[ai+1,bi+1]

f i+1(y1, . . . , yi, yi+1), 1 ≤ i ≤ N − 1. (6)

Then, according to (4), in order to find the solution to the multidimensional
problem (1)–(2) it is sufficient to solve the one-dimensional problem

f(y∗) = min
y1∈[a1,b1]

f1(y1). (7)

But in order to evaluate the function f1 at a fixed point y1 it is necessary to
solve the one-dimensional problem of the second level

f1(y1) = min
y2∈[a2,b2]

f2(y1, y2), (8)

and so on up to the univariate minimization at the N -th level the function
fN (y) = f(y) with fixed coordinates y1, . . . , yN−1.

Thus, instead of the multidimensional problem (1)–(2) one can solve the set
of nested one-dimensional subproblems

min
yi∈[ai,bi]

f i(y1, . . . , yi−1, yi), 1 ≤ i ≤ N, (9)

in which the coordinates y1, . . . , yi−1 have been already determined by the
subproblems of preceding levels. The objective functions f i(y1, . . . , yi) of the
subproblems (9) satisfy the Lipschitz condition for the corresponding argument yi
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subject to the assumption (3) for the function f(y) (see [48]). Therefore, efficient
univariate optimization algorithms can be taken for solving these subproblems.
Various combinations of such the algorithms with the nested scheme (4) have
been proposed in [5, 9, 25, 33–35].

The recursive character of generating the subproblems (9) during the opti-
mization forms a hierarchical structure of subordination for these subproblems as
a tree where the root is the subproblem (7) and the leaves are the subproblems
of the N -th level. Fig. A.1 shows such a structure for N = 3.

Algorithmic implementation of the nested optimization scheme has some
features. In the classical version (see, e.g., [5, 31]) during solving the root prob-
lem (7) a new evaluation of the function f1 at a new point (new search iteration),
i.e., solving a new subproblem of minimization of f2 at the second level is
supposed to be carried out only after the completion of the current iteration. It
means that only one minimization subproblem at the second level can be active
(can be in the course of solving) because the other subproblems of this level either
have been already completed or will be initiated later. Analogously, the same
situation takes place at all the rest of levels and at every moment of the multidi-
mensional optimization not more than N univariate subproblems are active and
they belong to a path from the root to a leaf. In Fig. A.1 one of the possible
paths consists of subproblems marked with grey colour. Such organization of
computations signifies that the information on the subproblems which have been
already completed at the level i is not used during current minimization of a
function f i from (9). For example, in Fig. A.1 all the subproblems located above
the active ones (marked with grey) have been already solved and information
on the objective function obtained in the course of solving these subproblems
is not used in the currently solved subtasks. Such loss of information leads
to increasing the number of trials (evaluations of the objective functions) and
worsens the efficiency of optimization. Indeed, if during the minimization of a
function f i from (9) we get values higher than ones obtained in a subproblem
of the same level solved earlier, then, may be, it is reasonable not to continue
solving the current subproblem up to the end and not to spend excessive trials.

This idea is realized in the adaptive nested optimization scheme proposed
in the paper [38] containing a detailed algorithmic description of the adaptive
scheme. The main suggestion is to give up the principle of strict subordination
inherent to the classical nested scheme and to use a simultaneous consideration
of all the univariate subproblems arising in the course of multidimensional opti-
mization. In the adaptive scheme all the generated subproblems are active and a
numerical “measure of quality” for each subproblem is introduced (this measure
is called the subproblem characteristic). An iteration of the multidimensional
optimization consists in the choice of the subproblem with maximal characteristic
and carrying out a new trial within this subproblem. Such the approach allows
choosing the subproblems with lower values of objective univariate functions (9)
more often than with the higher ones. The way of defining the subproblem
characteristics can be different, but in the case when the univariate charac-
teristical algorithms [49, 50] are used for solving the subproblems (9) (see the
general description of these algorithms below) the maximal interval characteristic
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generating by the algorithm in the course of optimization can be taken as the
subproblem characteristic.

The second approach is based on the known fact that a finite interval [a, b]
of the real axis and the N -dimensional hyperparallelepiped (2) are equipollent
sets and there exist mappings called Peano space-filling curves (or evolvents)
which map the unit interval [a, b] onto the hyperparallelepiped (2) continuously
and unambiguously.

Let y(x) be such an evolvent. Let us consider the function

ϕ(x) = f(y(x)) (10)

and the one-dimensional problem

ϕ∗ = ϕ(x∗) = min
x∈[a,b]

ϕ(x). (11)

Owing to (3) the function f(y) is continuous and, because of continuity of f(y)
and y(x),

min
y∈P

f(y) = min
x∈[a,b]

ϕ(x), (12)

and the point y∗ = y(x∗) is the global minimizer of the multidimensional
problem (1)–(2).

As a result, solving the univariate problem (11) allows obtaining the solution
to the initial problem (1)–(2). A wide spectrum of the methods exploiting this
idea is presented, for example, in publications [5, 28, 40, 43–46]. It should be
noticed that the objective function ϕ(x) = f(y(x)) of the univariate problem (11)
satisfies in general case the Hölder condition

|ϕ(x′)− ϕ(x′′)| ≤ H N
√
|x′ − x′′|, x′, x′′ ∈ [a, b], (13)

if the function f(y) is Lipschitzian (3), and the resulting Hölder constant H is
finite and depends on the Lipschitz constant L and the dimension N [5, 48] only.

Combinations of the reduction schemes described above with different uni-
variate techniques of global search generate corresponding multidimensional
algorithms of solving the multiextremal problem (1)–(2). Since in the nested opti-
mization schemes (both classical and adaptive) all the univariate subproblems (9)
satisfy the Lipschitz condition, we considered as one-dimensional methods the
known algorithms of Lipschitzian optimization proposed by Piyavskij [25] and
Strongin [51] which are theoretically substantiated and quite efficient. In regard
to the reduction on the base Peano evolvents, the reduced objective function (10)
is Hölderian (13) and for solving the univariate problem (12) it is necessary
to apply the methods oriented at this class of optimization problems. As such
the methods we took two algorithms which are generalizations [5, 28] of the
Piyavskij’s and Strongin’s methods mentioned above.

All the univariate methods chosen for our research belong to the class of
characteristical algorithms introduced by Grishagin [50] (see also [49]). Therefore,
at first we describe a general structure of the characteristical methods and then
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give in details the specificity of each method in the framework of the general
description.

Let us consider the problem of univariate optimization in a standardized
form: to find the minimal value

ϕ∗ = ϕ(x∗) = min
x∈[a,b]

ϕ(x) (14)

of a function ϕ(x) over a finite interval [a, b] ⊂ R1 where the objective function
ϕ(x) satisfies either Lipschitz (3) or Hölder (13) condition in the feasible domain
[a, b].

Let the term “trial” denote an operation that calculates the value of the
function ϕ(x) at a point x ∈ [a, b]. An optimization method is supposed to
place sequentially trials at points x1, x2, . . . , xk, . . . with corresponding outcomes
zk = ϕ(xk), k = 1, 2, . . . .

A numerical method of solving the problem (14) is characteristical if its
decision rule of planning trials consists of the following actions.

The first two trials are to be carried out at the end-points of the interval
[a, b], i.e.,

x1 = a, x2 = b, (15)

with the values z1 = ϕ(a), z2 = ϕ(b).
The point xk+1, k > 2, of any subsequent (k + 1)-th trial is chosen in

accordance with the following steps:

Step 1. All the points x1, x2, . . . , xk of preceding trials are renumbered by sub-
scripts in increasing order, i.e.,

a = x1 < x2 < · · · < xk = b. (16)

The values zi = ϕ(xi), 1 ≤ i ≤ k, are juxtaposed to the points xi,
1 ≤ i ≤ k, from (16).

Step 2. For each subinterval (xi−1, xi), 2 ≤ i ≤ k, a numerical value R(i) is
calculated (this value is called characteristic of the subinterval).

Step 3. The subinterval (xt−1, xt) with the maximal characteristic is selected
among all the subintervals:

R(t) = max
2≤i≤k

R(i). (17)

Step 4. The next (k + 1)-th trial is executed at a point xk+1 ∈ (xt−1, xt) and
the value zk+1 = ϕ(xk+1) is calculated.

The general conditions of convergence to global minimum for characteristical
algorithms have been proven in [49]. In particular, these results substantiate the
termination criterion in the form

xt − xt−1 ≤ ε, (18)
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where t is the argument of the largest characteristic R(t) from (17) and ε > 0 is a
predefined coordinate accuracy of the search, i.e., rules 1–4 are carried out until
the length of the interval with maximal characteristic is less than the accuracy ε.

Now in order to describe a characteristical algorithm it is sufficient to define
the expressions for its characteristics and the rule of placement of the next trial
within the interval with maximal characteristic.

Following this way, we give corresponding descriptions for 4 univariate char-
acteristical methods used in the reduction schemes under consideration.

The first two methods are intended for optimization of univariate Lipschitzian
functions and are used in classical and adaptive nested schemes.

The first method was proposed by Piyavskij [25] and it is well-known in the
Lipschitzian optimization. Its characteristics R(i) are calculated as

R(i) =
m(xi − xi−1)

2
− zi−i + zi

2
, (19)

and the point of new trial is calculated in accordance with the expression

xk+1 =
xt−1 + xt

2
− zt − zt−1

2m
, (20)

where m > 0 is the parameter of the method. We will use for short designation
of this algorithm the abbreviation PM (Piyavskij’s Method).

The second algorithm was proposed by Strongin [5, 48, 51]. It has the
characteristics

R(i) = m(xi − xi−1) +
(zi − zi−1)2

m(xi − xi−1)
− 2(zi−1 + zi), (21)

and its new trial point xk+1 is given in accordance with the relation (20). The
value m > 0 is the parameter of the method. The author of the method called it
simply Global Search Algorithm and we keep this name in the short form GSA.

If the objective function in the problem (14) satisfies the Lipschitz condition
with the Lipchitz constant L > 0 then the convergence to all global minima
is provided by the methods described when the parameter m > L for PM and
m > 2L in GSA. Unfortunately, the value of the Lipchitz constant is unknown,
as a rule, and for the parameter m one can use its adaptive estimation [5, 48].

m =

{
rM, M > 0,

1, M = 0,
(22)

where

M = max
2≤i≤k

|zi − zi−1|
xi − xi−1

(23)

and r > 1 is the parameter of the method.
The next two algorithms are oriented at solving the problem (12) with a

Hölderian objective function and are generalizations of PM and GSA to this
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case. The third methods called GPM (Generalized Piyavskij’s Method) uses the
characteristics

R(i) =
m N
√
xi − xi−1

2
− zi−1 + zi

2
, (24)

and the new trial point

xk+1 =
xt−1 + xt

2
− sign(zt − zt−1)

|zt − zt−1|N

2rmN
. (25)

The fourth method — Generalized Global Search Algorithm (GGSA) contains
the characteristics

R(i) = m N
√
xi − xi−1 +

(zi − zi−1)2

m N
√
xi − xi−1

− 2(zi−1 + zi), (26)

and the point of the new trial is calculated in accordance with (25).
In both the methods the parameter m is taken in the form (22), but instead

of (23) the relation

M = max
2≤i≤k

|zi − zi−1|
N
√
xi − xi−1

, (27)

is used.

3. Convergence of multidimensional reduction algorithms

Combinations of the nested dimensionality reduction schemes with the uni-
variate methods PM and GSA generate the multidimensional algorithms for
solving the problem (1). Let us call these algorithms in the following manner:
PM-C and GSA-C are the classical nested scheme with the methods PM and GSA
correspondingly at the univariate levels of reduction (9), and PM-A and GSA-A
realize the adaptive nested scheme in which for the univariate optimizations (9)
the methods PM and GSA are used respectively.

Convergence to the global solution of the problem (1) was proven for GSA-C
in the monograph [48] and for GSA-A in the paper [38]. Moreover, the methods
GPM and GGSA provide the property of global convergence as well (see [28, 48]).
As for PM-C and PM-A, the problem of their convergence to absolute minimum
was open so far, and in the present paper we give a theoretical substantiation of
this important property.

First of all, we prove an auxiliary assertion on the sensitivity of PM to the
possible errors in calculations of objective function values.

Describing the general structure of the characteristical algorithms we supposed
that the results zk at the trial points coincide with strict values of the objective
function (14), i.e., zk = ϕ(xk), k = 0, 1, . . . . But in the real optimization there
are disturbances caused by computational errors. Assume that these errors are
bounded by a real number ξ > 0. Then [48] the results zk of trials can be treated
as precise values of a function ω(x) such that

|ω(x)− ϕ(x)| ≤ ξ, x ∈ [a, b]. (28)
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After termination of the search caused by the stopping criterion (18) the
value

ω∗k = min
1≤i≤k

zi (29)

may be considered as an approximation of the global minimum ϕ∗ of the function
ϕ(x) from (14). In this case, the sensitivity of the method to the bounded errors
can be estimated by a degree of proximity between ω∗k and ϕ∗. The next theorem
provides such an estimation for the algorithm PM.

Theorem 1. Assume that after a termination of the search according to the
stopping criterion (18) there is a truncated sequence of trials x1, x2 . . . , xk gener-
ated by PM during minimizing the approximation ω(x) of the objective function
ϕ(x), x ∈ [a, b], satisfying the inequality (28), and the function ϕ(x) is Lips-
chitzian with constant L > 0. Then the following inequality holds:

|ω∗k − ϕ∗| ≤
Lε

2
+ ξ, (30)

if the PM’s parameter m > L.

Proof. Let us order the elements of the truncated sequence x1, x2, . . . , xk in
accordance with the rule (16) and introduce the designations αi = (zi−1 + zi)/2,
δi = xi − xi−1, 2 ≤ i ≤ k, where zi = ω(xi), 1 ≤ i ≤ k.

From the Lipschitz condition for the function ϕ(x)

ϕ(xi) + ϕ(xi−1)− Lδi ≤ 2ϕ∗, 2 ≤ i ≤ k, (31)

and owing to (28)

zi − ϕ(xi) ≤ ξ, zi−1 − ϕ(xi−1) ≤ ξ, 2 ≤ i ≤ k, (32)

from where

αi −
Lδi
2
≤ ξ + ϕ∗, 2 ≤ i ≤ k, (33)

or

min
2≤i≤k

(
αi −

Lδi
2

)
− ξ ≤ ϕ∗. (34)

On the other hand, for the point xs such that ω(xs) = ω∗k taking into account (28)
and the inequality ϕ(xs) ≥ ϕ∗ we have

ϕ∗ ≤ ω∗k + ξ. (35)

Let the number q, 2 ≤ q ≤ k, be such that

αq −
Lδq
2

= min
2≤i≤k

(
αi −

Lδi
2

)
. (36)

Let us consider two cases. The first one corresponds to the situation δq ≤ ε for
ε from (18). Since ω∗k ≤ αq then

ω∗k −
Lε

2
≤ αq −

Lδq
2
≤ αi −

Lδi
2

(37)
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for all i, 2 ≤ i ≤ k.
In the opposite case δq > ε let us take the interval (xt, xt−1) with the

largest characteristic R(t) from (17) which the inequality (18) is true for. The
characteristic R(q) ≤ R(t) because of (17), i.e.,

R(t)−R(q) =
m(δt − δq)

2
− αt + αq ≥ 0, (38)

from where

αt −
Lδt
2
≤ αq −

Lδq
2
− (m− L)(δq − δt)

2
≤ αq −

Lδq
2
, (39)

taking into account m > L and δq > ε ≥ δt.
But αt − Lδt/2 ≥ ω∗k − Lε/2, therefore, from (34) it follows that

ω∗k − ϕ∗ ≤
Lε

2
+ ξ. (40)

On the other hand, due to (35) we have

ϕ∗ − ω∗k ≤ ξ ≤ ξ +
Lε

2
. (41)

The inequalities (40), (41) prove the main assertion (30) of the theorem. The
proof has been completed.

Now let us return to the multidimensional problem (1) and the algorithm
PM-C. It should be noted that the univariate subproblems (9) are solved ap-
proximately. Indeed, the evaluation of the function fN−1(y1, . . . , yN−1) for
fixed y1, . . . , yN−1 consists in minimization by means of PM the function fN (y1,
. . . , yN−1, yN ) for the coordinate yN and instead of the precise value fN−1(y1,
. . . , yN−1) we obtain an approximate estimation ωN−1(y1, . . . , yN−1). Further-
more, evaluation fN−2(y1, . . . , yN−2) for fixed y1, . . . , yN−2 is implemented as an
approximate minimization of the function ωN−1(y1, . . . , yN−1) and the result of
this minimization is an approximate estimation ωN−2(y1, . . . , yN−2), etc., up to
obtaining an estimation ω∗ = ω1 in the subproblem min{ω1(y1) : y1 ∈ [a1, b1]}.
In this procedure the resulting value ω∗ is an estimation of the sought solution
f∗ from (1). As a consequence, in order to ascertain the convergence of PM-C to
global minimum of the problem (1) it is sufficient to prove the convergence the
estimation ω∗ to f∗ when ε1 (search accuracy in (18) for the subproblem (7))
tends to zero, i.e.,

lim
ε1→0

ω∗ = f∗. (42)

If PM is applied for univariate minimization of subproblems (9), its parameters
can differ at different levels of recursion, in particular, one can take distinct
accuracies in the termination criterion (18) and consider the vector

ε = (ε1, . . . , εN ), (43)

where εi is the termination accuracy during solving the subproblems (9) for the
coordinate yi, 1 ≤ i ≤ N .
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Theorem 2. If the objective function f(y) in the problem (1) satisfies the
Lipschitz condition (3) with constant L > 0, all the subproblems (9) are solved
by PM with the parameter m > L and accuracies εi satisfy the inequalities

εi+1 < εi, 1 ≤ i < N, (44)

then the assertion (42) is true.

Proof. Suppose that for a number i, 1 ≤ i < N , the inequality

|f i(y1, . . . , yi)− ωi(y1, . . . , yi)| ≤ ξi, (45)

holds. This condition is met for i = N with ξN = 0 as

ωN (y1, . . . , yN ) = fN (y1, . . . , yN ) = f(y). (46)

As the corollary of the Lipschitz condition for the function f(y), all the func-
tions f i(y1, . . . , yi) are Lipschitzian as well with the same constant L (see [48]).
Then, in accordance with the Theorem 1 the inequality (45) involves for the
number i− 1 the estimation

|f i−1(y1, . . . , yi−1)− ωi−1(y1, . . . , yi−1)| ≤ ξi +
Lεi
2
, (47)

and, as consequence, one can take

ξi−1 = ξi +
Lεi
2

(48)

Since the condition (45) takes place for i = N with ξN = 0 it is true for all i,
1 ≤ i ≤ N , and we get the estimation

|ϕ∗ − ω∗| ≤ L

2

N∑
i=1

εi, (49)

Then the statement (42) results immediately from (44) and (49). The theorem
has been proven.

Finally, for the adaptive nested scheme with the Piyavskij’s method inside
(PM-A) its convergence follows from the convergence of PM-C by reasons which
substantiated in [38] the convergence of GSA-A.

4. Numerical experiments

In this section we consider 7 global search algorithms and compare their
efficiency experimentally. 6 methods combine the reduction schemes described
above with two Lipschitzian one-dimensional methods and their generalizations
to the Hölder case and were considered in previous section. To demonstrate the
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efficiency of these algorithms in comparison with a method of another nature we
took the well-known method of Lipschitz optimization DIRECT [22, 23] as well.

All the methods were compared on the test class of multiextremal functions
GKLS from [47] being an easy-to-use source of functions with tuned complexity.
The test sets consisting of 100 GKLS problems were taken for each of dimensions
2, 3, 4. For all the dimensions the hard class of GKLS was chosen with the
following parameters:

• 10 local minima;

• radius of the attraction region of the global minimizer equal to 0.12;

• standard function value −1.0 at the global minimizer;

• distance from the global minimizer to the vertex of the paraboloid equal
to 0.9.

The efficiency of algorithms was measured in accordance with the following
two criteria: the average number K of trials (evaluations of the objective function)
executed during optimization of the functions from the test set and the number
P of test problems solved successfully. A test problem was supposed to have been
solved if the trial with the lowest value obtained in the course of optimization
was placed in a δ-neighbourhood of the global minimizer.

In more details, the values K and P were estimated as follows. The algorithm
with a given set of parameters solves n optimization problems from the test class.
After solving the i-th test problem we have the number Ki of executed trials
and the distance

Pi =

√√√√ N∑
j=1

(y∗j − y
+
j )2 (50)

between the real global minimizer y∗ = (y∗1 , . . . , y
∗
N ) and the coordinate vector

y+ = (y+1 , . . . , y
+
N ) corresponding to the lowest function value found by the

algorithm.
After solving all the test problems the criteria K and P are calculated as

K =
1

n

n∑
i=1

Ki, P =
1

n

n∑
i=1

pi, (51)

where for given accuracy δ > 0

pi =

{
1, Pi < δ,

0, Pi ≥ δ.
(52)

Taking these criteria into consideration it is possible to apply the method of
operational characteristics [39, 52] which allows one to present comparison results
in a visual form. In accordance with this method an optimization algorithm
solves problems of a test set several times using different values of its parameters
and obtains a pair (K,P ) of the efficiency criteria for each variant of parameters
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chosen. The set of these pairs is called operational characteristic of the algorithm.
Plotting the operational characteristics on the plane (K,P ) enables to compare
visually the efficiency of different optimization algorithms. Namely, if for the
same P the operational characteristic of an algorithm is located to the left of
the characteristic of another method, the first algorithm is better because it has
spent less number of trials K for successful solving the same number of problems.

In experiments the algorithms on the base of the reduction schemes used
in (22) the identical parameter r = 8 providing for all 6 methods the sufficient
conditions of global convergence and the curves of the operational characteristics
for these algorithms and the method DIRECT were obtained by means of
variation of parameters in stopping criteria of these methods.

The operational characteristics of the optimization algorithms underwent the
examination on the 3-dimensional GKLS set are divided for better visualization
into 3 groups and presented in Fig. A.2, A.3, A.4.

Fig. A.2 and Fig. A.3 contain the operational characteristics for the algorithms
of PM-type family and for the algorithms of GSA-type family correspondingly.
Fig. A.4 compares the operational characteristics of the algorithms based on the
adaptive nested scheme. In these figures the number of trials is plotted on the
abscissa axis in the logarithmic scale.

As it follows from the results presented in Fig. A.2 and Fig. A.3, among
the algorithms combining the methods of the same type with different schemes
of dimensionality reduction the adaptive nested scheme is most efficient if it
is necessary to solve problems with high reliability P . At the same time, the
efficiencies of the reduction by means of Peano-type space-filling curves and the
classical nested scheme differ slightly. Moreover, all 6 algorithms realizing the
dimensionality reduction outperform significantly the method DIRECT.

With regard to comparison of the algorithms having demonstrated the best
results in their families, the method GSA-A is some more efficient than PM-A.

The similar conclusions on the efficiency of the compared algorithms can
be drawn after the experiments on the 2- and 4-dimensional GKLS classes.
As a confirmation Tables A.2 and A.1 describe the results of testing for these
dimensions. The left column contains the number K of trials and the other
columns correspond to the studied methods and show the quantity of problems
solved successfully depending on the spent trials.

5. Conclusion

Numerical multidimensional global optimization algorithms based on several
ideas of a dimensionality reduction have been considered. These algorithms
reduce the multidimensional problem to one or several univariate subproblems
solved by efficient methods of one-dimensional global optimization. Two ap-
proaches to reducing the dimension in multiextremal Lipschitzian optimization
problems have been used: the reduction by means of Peano-type space-filling
curves and the nested optimization scheme. In the framework of the second
approach two versions of the nested reduction have been taken, namely, classical
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nested scheme and its recent generalization — adaptive nested optimization. For
solving the univariate subproblems the known algorithms proposed by Strongin
and Piyavskij and the generalizations of these methods to the class of Hölderian
functions have been used.

For the considered algorithms the theoretical substantiation of convergence to
global optimum has been given including both the known results and the new ones
proved in the paper. For evaluation of efficiency a representative experimental
testing of the methods has been carried out for different dimensions on sets of
multiextremal functions belonging to the well-known GKLS test class being at
present a classical tool for testing global optimization algorithms. Additionally,
the popular method DIRECT has been tested to compare the reduction methods
with an algorithm of the other nature. As a result of experiment, among all
competitors the adaptive nested scheme has demonstrated the best efficiency.

The promising way of future researches consists in development of parallel
algorithms based on the adaptive nested scheme, theoretical investigation of
their properties and evaluation of parallelization efficiency, including comparison
with existing parallel optimization methods.
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Appendix A.
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Figure A.1: The subordination structure of the univariate subproblems (9)
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Figure A.2: Operational characteristics of PM-type algorithms and DIRECT
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Figure A.3: Operational characteristics of GSA-type algorithms and DIRECT
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Figure A.4: Operational characteristics of GSA-A and PM-A

Table A.1: Number of problems solved successfully depending on
the executed trials on four-dimensional class

K GSA-A GSA-C GGSA PM-A PM-C GPM DIRECT
500 6 1 1 1 1 1 1
1000 22 1 20 21 1 15 1
2000 45 4 34 46 5 29 1
5000 82 48 53 79 47 57 1
10000 96 78 71 92 72 74 1
16000 100 87 79 100 86 83 1
30000 100 93 89 100 95 90 20
50000 100 100 100 100 100 100 50
70000 100 100 100 100 100 100 71
90000 100 100 100 100 100 100 81
120000 100 100 100 100 100 100 100
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Table A.2: Number of problems solved successfully depending on
the executed trials on two-dimensional class

K GSA-A GSA-C GGSA PM-A PM-C GPM DIRECT
10 1 1 8 1 1 18 3
20 35 32 53 30 26 52 6
30 82 71 80 68 59 71 9
40 96 94 91 92 86 84 13
50 100 99 97 100 96 92 16
80 100 100 100 100 100 100 24
150 100 100 100 100 100 100 35
250 100 100 100 100 100 100 47
500 100 100 100 100 100 100 80
800 100 100 100 100 100 100 100
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